Q1. (a)	Explain what is meant by the coefficient of performance of a heat pump.			

(1)

(b) The box labelled \mathbf{E} in the figure below shows a diagram of a combined heat and power scheme. The scheme provides electrical energy W from an engine-driven generator and heat Q_1 for buildings situated near to the generator.

Some of the electrical energy is used to drive the heat pump shown in the box labelled \mathbf{P} . Output Q_2 is also used to heat the buildings.

You may assume that the engine runs at its maximum theoretical efficiency and that the electrical generator is 100% efficient. The output power of the engine-driven generator is 80 kW.

(i) The fuel used in the engine (**E**) is propane of calorific value 49 MJ kg⁻¹. Calculate the rate of flow of propane into the engine. State an appropriate unit.

			(4)
	(ii)	The heat pump has a coefficient of performance of 2.6. The power supplied by the electrical generator to the heat pump (P) i Calculate the total rate at which energy is available for heating from be engine and heat pump.	
		rate at which energy is availableW	(3)
	(iii)	The conversion of electrical energy to heat is nearly 100% efficient. E why the designer has proposed installing a heat pump rather than an heater to provide the additional heat Q_2 .	
			(2) (Total 10 marks)
Q2. (a)	Explain	what is meant by a reversed heat engine.	
	••••		•
			•
			. (2)

rate of flow unit unit

	(b)	Explain why the coefficient of performance of a reversed heat engine when operating as a heat pump is always greater than the coefficient of performance the same reversed heat engine when operating as a refrigerator.	nce of
			(2) (Total 4 marks)
Q3.		(a) The coefficient of performance of a refrigerator is given by	
COP	ef = ($rac{Q_{ ext{out}}}{Q_{ ext{in}}-Q_{ ext{out}}}$	
		With reference to a refrigerator, explain the terms $Q_{\scriptscriptstyle in}$ and $Q_{\scriptscriptstyle out}$.	
			(2)
	(b)	A refrigerator is designed to make ice at -10°C from water initially at room temperature. The energy needed to make 1.0 kg of ice at -10°C from water at room temperature is 420 kJ. The refrigerator has a coefficient of performation.	
		(i) Calculate the power input to the refrigerator if it is required to make 5. ice every hour.	5 kg of
		answer = W	

•	2
(2

(ii)	Calculate the rate at which energy is delivered to the surroundings of the
	refrigerator.

answer = W (1) (Total 5 marks)